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Solid state sintering of ceramics: pore

microstructure models, densification

equations and applications
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The stability of closed pores in two and three dimensions has been discussed and it is
found that the stability of pores in two dimension can be determined mathematically from
their particle coordination number and dihedral angle; while those in three dimension can
be approximately determined by a spherical pore model. This model is set up by first
excluding the effect of interface tension, so the pore was supposed to be spherical, and
then the tensile stress arising from the interface tension was allowed to act on this
hypothesized spherical pore. On the basis of the spherical pore model, pore microstructure
models for real powder compacts were set up and the densification equations for the
intermediate and final stages of sintering were derived. The criterion for pore shrinkage,
and the effect of pore size distribution and green density were discussed according to the
derived equations. The densification equations for pressureless solid state sintering can be
easily extended to describe the densification behaviour during hot-pressing or
hot-isostatic-pressing. Densification characteristics in liquid state sintering were also
considered from the result of solid state sintering. C© 1999 Kluwer Academic Publishers

1. Introduction
1.1. Sintering stages and existing solid

state sintering models and theories
1.1.1. About sintering stages
For advanced ceramics, densification is the essential
process for sintering, and full densification is a pre-
requisite for the achievement of their intrinsic proper-
ties. Densification in pressureless sintering is related to
the system itself, and densification theory in pressure-
less sintering has been a fundamental theme for sev-
eral decades [1–11]. Pressureless sintering can either
be liquid state sintering or solid state sintering where
only solid phase(s) is present in the system during den-
sification. The present paper is mainly concerned with
solid state sintering.

According to Coble [12, 13], solid state sintering can
be divided into three stages. The first or initial stage of
sintering involves interface formation and neck growth
between primary particles (the contact area between the
particles increases from zero (ideally point contact)) to
a certain extent, and the neck growth will cease when an
equilibrium configuration is reached. The initial stage
of sintering, as indicated by Coble, involves no grain
growth.

The second or intermediate stage of sintering starts
when grain growth begins. During this stage of sinter-
ing, grain boundaries form extensively but pores are
still connected with each other and form a continuous
pore network, i.e., pore channels exists, while the grain

boundaries are still isolated and no continuous grain
boundary networks are formed. Most densification and
microstructure changes take place in this stage of sin-
tering.

As pores become isolated and grain boundaries form
a continuous network, the intermediate stage of sinter-
ing ends and the third or final stage of sintering starts.
In the final stage of sintering, isolated pores are located
at grain boundaries (interfaces), or linear junctures of
three grains or point junctures of four grains, and/or
entrapped in grains. Density increases slightly but the
microstructure develops (grains grow) very rapidly in
this stage of sintering.

1.1.2. Models for the initial stage
of sintering

Based on a similar two-sphere model numerous den-
sification equations were developed by different au-
thors [14–20] to describe the densification processes
in the initial stage of pressureless sintering. The densi-
fication equations were derived by supposing that the
linear shrinkage rate of a sintered compact is equal to
the rate of approach of the centers of two spheres. In
this way, material transport by surface diffusion, vapor-
condensation, or volume diffusion from surface to the
neck area were assumed to have no contributions to the
densification, while those by viscous flow, grain bound-
ary diffusion and the volume diffusion from boundary
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to the neck area were considered to contribute. The to-
tal shrinkage in this stage of sintering is very limited
[18, 19]. A detailed summary of the sintering theories in
the initial stage of sintering can be found in the Exner’s
review paper [18].

1.1.3. Model for the intermediate stage
of sintering

The sintering phenomena in this stage of sintering are
much more complicated because of the complexity of
the densification process itself and the interference from
grain and pore growth on densification, which leads
to difficulties in setting up an appropriate model de-
scribing the process. In the early 60s, Coble [12, 13]
put forward a microstructure model for materials trans-
port (diffusion)—a tetrakaidecahedron with cylindrical
pores located at each edge. With this model, a densifi-
cation equation was derived and the relation between
the porosity remaining in the sintered body and the
sintering time was obtained. This model has been ac-
cepted as the derived porosity-time relation fitted well
with the experimentally observed linear relationship be-
tween density and the logarithm of time.

After Coble’s model, only limited progress has been
made on modeling the intermediate stage of sintering
on a similar microstructure scale. Johnson [21] after
Coble reported a similar revised model but with no ma-
jor variations.

Coble’s model is oversimplified, as has been found
by many researchers [18, 19]. In addition, the model
can not be used to explain several important sintering
phenomena. The effect of agglomerates on densifica-
tion, for example, as has been pointed out in the last
two decades, is very significant for fine powders, and
Coble’s theory was unable to explain this. This is, most
probably, because the effect of interface tension, and
thus the thermodynamic stability of pores, was not con-
sidered in his model. Experimentally, the linear relation
between densities and the logarithm of time obtained by
Coble under the assumption of a cubic grain growth law
is also true for sintering process such as hot-pressing
where very limited grain growth was observed [22–24],
and furthermore, phenomenological fitness with the re-
lation does not necessarily convey physical meanings
[18, 19, 25]. As has been found by Pejovnik and co-
workers [26], the process can be fitted to other forms
of simple empirical equations [26, 27], if appropriate
parameters were selected for the equations. A detailed
analysis about Coble’s model and his derivation of the
densification equations will be given in Section 5.

1.1.4. Theories for the final stage
of sintering

Similar to the intermediate stage, there are no satis-
factory theories describing the densification process in
this stage of sintering. By making use of and slightly
modifying his microstructural model for sintering in
the intermediate stage, Coble gave a similar relation
between porosity and time [12], which is far less sat-
isfactory than for the intermediate stage because of the

non-existence of a linear relation between porosity and
the logarithm of time in this stage of sintering.

A significant progress for characterizing the final
stage microstructure development has been made by
Harmeret al. [28, 29]. A microstructure map was de-
veloped which mainly involves the relation between
the grain size and pore size, or more importantly, the
relation between the grain size and the relative den-
sity. However, a direct densification equation was not
available.

1.1.5. Other theories for the solid stage
of sintering

In addition to the traditional microstructure (diffusion)
model for solid state sintering, there are some other
macro- or statistical sintering models being developed
[30–32]. In the present author’s opinion, however, these
models are of limited significance as they involve some
self-defined parameters which have no definite physical
meaning, and a densification equation for solid state
sintering is not available in these theories.

1.1.6. Contributions of the different
sintering stages to densification

It is obvious that most of theories are for the first stage of
sintering based mostly on a two identical sphere model
[18, 19]. The densification contribution in the early
stage of sintering is very limited, and far from account-
ing for all the sintering process. Many experiments for
the sintering of very large metal sphere showed that
the linear shrinkage was less than 10% [18, 19], and in
fact regularly at around 2–3%. For real ceramic pow-
der compacts, grain growth (i.e., coarsening) will occur
during heating so the densification contribution in this
stage is further decreased. The final stage of sintering
generally starts at the relative densities of≥90% and
so the most densification takes place in the interme-
diate stage of sintering, and therefore, more attention
should be paid to this stage of sintering. Unfortunately,
the model description and theoretical analysis for the
intermediate stage of sintering is much less than those
for the early stage of sintering.

1.2. The interaction between surface
tension and interfacial tension

1.2.1. The driving force for the densification
The densification process of a powder compact is
accompanied by a decrease of the surface area and
the formation of interfaces, i.e., the surface tension
is the driving force for densification and the interface is
the resistance to densification. The whole driving force
is:

1G = 1Gs+1Gi = γs dAs+ γi dAi (1)

where1G,1Gs and1Gi are the changes of the total
free energy, surface energy and the interface energy;γs
andγi are the surface and interface tension andAs and
Ai are the specific surface and interfacial areas.
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Figure 1 Schematics of the formation of dihedral angle between two identical touching cylinders, (a) particles in touch, (b) neck formation, 0<φ<φe,
(c) equilibrium configuration,φ=φe.

1.2.2. Chemical potential for the neck
formation and mass transport

Considering the two sphere model, neck formation be-
tween two particles is driven by the differential chem-
ical potential between the neck area and the particle
surface. When the formation of interface area is not
considered at first, the chemical potential,1µn, or, the
driving force for the neck formation, according to the
Gibbs-Kelvin relation, will be:

1µn = γsÄ(1/ρn− 1/r ) (2)

whereÄ is the atomic volume,ρn andr are the radii
of the neck and the particles. As the neck surface is
concave judged from particles (circle center of neck is
out of particle),ρn< 0.

In addition to the neck formation process between
particles, there is the chemical potential for mass trans-
port within a particle or between particles, and this
chemical potential, defined as1µc, is:

1µc = γsÄ[(1/r1i + 1/r1ii )− (1/r2i + 1/r2ii )] (3)

wherer1i, r1ii and r2i, r2ii are the orthogonal princi-
pal radii within one particle at place ‘1’ and place
‘2’, or the orthogonal principal radii of two differ-
ent particles (r1> r2) for particle ‘1’ and particle ‘2’.
To simplify the equation, let 2/r1= 1/r1i+ 1/r1ii , and
2/r2= 1/r2i+ 1/r2ii , Equation 3 becomes:

1µc = 2γsÄ(1/r1− 1/r2) (3′)

It can be seen from Equation 3, if there is a differ-
ence of the radius of curvature (the particle is not a
sphere), mass transport would take place from the area
of larger curvature (smaller curvature radii) to the area
of smaller curvature (larger curvature area) till the parti-
cle becomes a sphere (wherer1i= r1ii = r2i= r2ii ); and
if two spheres of different radius (wherer1 andr2 are
the radii of them) are in contact, there will be the mass
transport between them from the smaller one to larger
one till the two particles become one sphere. This pro-
cess has been generally related to particle coarsening.

Neck formation between two spheres is accompa-
nied by a change of the particle shape. Some authors
believed [20] that neck formation can be accomplished
only with mass transport from adjacent to the neck, and
therefore form aso-calledundercutting configuration

close to the neck. However, this will probably not hap-
pen, as the formation of undercutting, thermodynami-
cally according to Equations 3 and 3′, increases the free
energy of the system and the spherical particles would
keep their spherical shape during neck formation.

1.2.3. Dihedral angle and the coordination
number

Considering a simple example of two touching cylin-
ders of the same diameter with infinite length (Fig. 1).
The neck will grow during sintering, and the contact
angle (φ) between the two adjacent surfaces of the two
cylinders increases from zero till a constant value ofφe
where the system reaches an equilibrium configuration,
andφe is theso-calleddihedral angle:

cosφe/2= γi/2γs (4)

This relation, though simple, is basic in explaining the
thermodynamics of pores in sintering [12, 13].

As a pore is coordinated by particles, it is there-
fore surrounded by pore-particle surfaces and particle-
particle interfaces, so pore stability must be affected
by the particle coordination number. This concept was
first put forward by Kingery and Francois [33] and later
developed by Lange [34] and Shi [35]. A critical parti-
cle coordination number for the stability of a pore can
be given as discussed in the following sections of this
paper.

1.3. The relation between the grain
growth and the densification

Traditionally grain growth (or coarsening) during sin-
tering is regarded as an interference or impedance to
densification. By studying the relation between densi-
fication and grain size of some particle arrays, Lange
[36, 37] suggested that grain growth via coarsening
can continually drive sintering by reinitiating sinter-
ing when a metastable equilibrium configuration (or
dihedral angle) for the particle array is reached. By
this means, Langeet al. [34] gave an explanation for
the linear relation between densities and grain size for
sintered alumina, which was found by Gupta [38] two
decades ago. The relation between densification and
grain growth will be discussed in the second paper of
this series [39].
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Figure 2 A two dimensional pore surrounded byn cylinders.

2. Pore stability—a spherical pore model
2.1. Stability of a two dimensional pore

determined by mathematical analysis
The stability of a pore in two dimension was discussed
by Kingeryet al. [33], and Lange [34] further put for-
ward the concept of the particle coordination number of
pores in three dimensions. A quantitative mathematical
analysis will be given as follows.

Fig. 2 shows a two dimensional pore surrounded by
n cylinders. The dihedral angle can also be established
between two touching surfaces, but the pore stability
is determined by both the dihedral angle and the par-
ticle coordination number for the pore. Fig. 3 is the
pore configuration under different particle coordination
numbers. Letρr, rp andn be the curvature radius of the
pore particle surface, the radius of its circumscribed
circle and the coordination number respectively (see
Fig. 4), from Fig. 4 we have:

ρr× sinα = sinβ × rp (5)

as

β = π/n (6)

and

α = π/2− φ = π/2− (π/2− π/n+ π/2− φ/2)

= φ/2− π/2+ π/n (7)

Figure 3 Schematics of the two dimensional pore configurations, (a)ρr > 0, n< nc; (b) ρr= 0, n= nc and (c)ρr < 0, n> nc.

Figure 4 Schematics for the relation betweenρr andrp (for details see
text).

so the relations among these parameters can be deter-
mined:

ρr = sin(π/n)

sin
(
φe

2 − π
2 + π

n

) · rp (8)

whereφe is the dihedral angle andn is the coordina-
tion number for the pore. As the radius of the circum-
scribed circle changes, the free energy of the systems
will change, as can be described as

dG = nγs · 2α dρr − nγi drp (9)

where 2α is the radian faced by every pore-particle
surface. Dividing Equation 9 by drp, and combining
Equations 7 and 8 into the above equation:

dG

drp
= φe− π + 2π

n

sin 1
2

(
φe− π + 2π

n

) · sin
π

n
nγs− nγi (10)

So, we have the following criterion for the pore stability
for dG/drp= 0:

nc = 2π/(π − φe) (11)

If n= 2π/(π −φe)= nc, ρr=∞, and the particle sur-
face is a plane, the system is at equilibrium,nc is the crit-
ical coordination number for a two-dimensional pore in
a plane; ifn< nc, ρr> 0, the particle surface is convex
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judged from the pore center, dG/drp> 0, the free en-
ergy of the system will increase as the pore grows (its ra-
diusrp increase); ifn> nc,ρr< 0, the particle surface is
concave judged from the pore centers, and dG/drp< 0,
the free energy of the system will decrease as the pore
grow. The pore configurations of different values ofρr
at a given dihedral angle are schematically illustrated
in Fig. 3.

2.2. Stability of a three-dimensional pore
(the pore in space)

The stability problem of a three-dimensional pore (a
pore in space) is much more difficult to deal with be-
cause the pore in practice is not a sphere. To simplify
the problem, the curvature of the pore-particle surface
led by the dihedral angle and the coordination num-
ber is first to be ignored temporarily, i.e., at first the
effect of interface energy is not considered, so under
this hypothesis this could be assumed thatφe=π , i.e.,
the pore was a ‘sphere’ and the pore-particle surface
energy would be 4πr 2γs, thus the driving stress for the
pore shrinkageσs is:

σs = d(4πr 2γs)

dr
· 1

4πr 2
= 2γs

r
(12)

On this basis, supposing that the stress,σi for the pore
expansion resulted from the interface energy acts on
this hypothesized ‘sphere’, will approximately be:

σi = d(n · l · 2γi · r )

dr
· 1

4πr 2
= ns

2π
· lγi

r 2
(13)

wherens is the coordination number of grains surround-
ing the pore in space (three-dimensional coordination
number),l is the grain boundary length between two
particles which face to the pore center (here the pore-
particle surface is a part of the ‘sphere’ surface and the
boundaries are arcs on the sphere surface with the same
edge length).

The two stresses are both perpendicular to the pore
sphere’s surface but have opposite directions, so the
compressive stress,σp, acting on the pore will be:

σp = σs− σi = 2γs

r
− nslγi

2πr 2
(14)

The stability of pores in three dimensions now can be
explained on the basis of the spherical model and Equa-
tion 14 for the three-dimensional pores (closed pores).

3. Microstructure models for pores
in sintering

3.1. The models and the deviation analysis
The above supposed spherical pore is fully surrounded
by grains without pore openings. In the intermediate
stage of sintering, the pores are connected with each
other through these openings and form a continuous
open network. With the help of the above pore model,
the pores in the intermediate stage of sintering are
still assumed to be spherical but with several openings

Figure 5 Schematics of the spherical pore microstructure model in space
with six openings on the pore surface (for the intermediate stage of
sintering).

which connect to other pores, as shown in Fig. 5 as
a schematic drawing of the model with six openings.
Without the openings, the model put forward for the
intermediate stage of sintering can be directly applied
to the final stage of sintering.

Deviations form the model are mainly in the cal-
culation of the surface energy as the real surface area
is certainly different from the spherical surface area.
The magnitude of the deviation depends on the shape
of the real pores. For the special case of a cubic pore
(particle coordination number of 6 and dihedral angle
of 90◦), the surface area calculated from the cube is
18.8% smaller than the circumscribed sphere, but for a
higher or a slightly smaller dihedral angle at fixed coor-
dination number, and a different coordination number
than 6, the deviations will be less than this value.

3.2. The space coordination number
of a pore

The coordination number in three dimensions (in space)
can be related to the size ratio between the pore and
its surrounding particles. Letd and D be the volume
equivalent diameters (diameter of a sphere of the same
volume as the concerned particle or pore) for a pore
and particles, and defineR as the size ratio of pores to
particles. If pores and particles are monosized and have
the diametersd andD, respectively, we have:

R= d/D (15)

and when there is a limited size distribution of pores
and particles, the average sizes of which ared̄ and D̄,
the ratioR̄ is defined as:

R̄= d̄

D̄
(16)

R or R̄ here represent the state of densification, the
decrease of̄R means pore shrinkage and densification
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and the increase of̄R, in contrast, represents a decrease
of density.

Let ns be the particle coordination number of a pore
in space, the inter-particle edge length facing the pore
be l , the inter-pore-particle area density beρ ′ (ρ ′ will
be less than one in the intermediate stage but be one in
the final stage of sintering), then through the calculation
of the surface area, we have:

nsl
2/ρ ′ = πd2

or

ns = πρ ′d2/ l 2 (17)

For the final stage of sintering, settingρ ′ = 1, we have:

ns = πd2/ l 2 (18)

3.3. The compressive stress on the pore
For a ‘spherical’ pore fully surrounded by grains, the
compressive stress has been derived as can be seen in
Equation 14, but for a spherical pore with openings in
it, the compressive stress will be a little different:

σp = ρ ′σs− σi = ρ ′2γs

rp
− nslγi

2πr 2
p

(19)

whereσp, σs andσi are the total compressive stress,
the compressive stress resulting from surface tension
and the tensile stress resulting from interface ten-
sion on the pore, respectively andrp is the radius of
the pore. The decrease of the surface tension-related-
compressive stress is reflected by the decreased pore-
grain surface density, while that of the interface-related-
tensile stress is reflected by the decreased coordination
number and/or the grain edge length.

To get a concise relation betweenσp and R, the re-
lation betweenl andd must be defined. Defining the
particle shape surrounding a pore of radiusrp= d/2 as
shown in Fig. 6 (treating the problem in two dimen-
sion), and assuming that the particle is a part of a sector
with its radial size of [(D + d)/2− d/2], and the cir-
cumferential size isD at the radius of (d+ D)/2, we
have:

d/ l = (d + D)/ l ′ = D(R+ 1)/ l ′

= (R+ 1)[sin(π/n)](π/n)−1 (20)

Figure 6 Schematics for the relation betweend/ l , R andns (for details
see text).

wherel andl ′ are the arc length at the radii ofd/2 and
(d+ D)/2. From Equation 18,ns= n2/π :

d

l
= (R+ 1)

sin(π/ns)1/2

(π/ns)1/2
(21)

Combining Equations 4, 17, 19 and 21 and the relation
d= 2rp, we obtain:

σp = 4γsρ
′

RD

[
1− (R+ 1)

sin(π/ns)1/2

(π/ns)1/2
cos

φe

2

]
(22)

In the intermediate stage of sintering, the coordination
number,ns, is usually larger than 4 (e.g., in the close
packing of spheres). To simplify the problem by as-
suming that at the intermediate stage of sintering,ns is
large enough for sinx= x then the above equation can
be written as:

σp = 4γsρ
′

RD

[
1− (R+ 1) cos

φe

2

]
(23)

For the final stage of sintering, pores may be surrounded
by less than 4 particles (e.g.,ns= 1 for pores within a
grain,ns= 2 for pores at boundaries), andρ ′ → 1, we
have:

σp = 4γs

RD

[
1− (R+ 1)

sin(π/ns)1/2

(π/ns)1/2
cos

φe

2

]
(24)

Equations 22–24 gives the sintering stresses for pores
and are the basic relations which determine the stability
of a pore thermodynamically.

4. Densification equations
4.1. Relation between densification rate and

the pore volume shrinkage rate
Let ρ be the relative density of a sintering sample,VT,
VS andVP are the total volume, volume of solid phase
and volume of pores in a unit weight, we have:

VT = VS+ VP, VT = 1/ρ, VP/VT = 1− ρ·
(25)

so,

dρ/ρdt = −dVT/VT dt = −(VP/VT) dVP/VP dt

= −(1− ρ) dVP/VP dt (26)

4.2. For a single pore
The volume change rate of a pore equals the diffusion
flux of species (atoms or vacancies), and the flux is
proportional to the effective diffusion coefficient and
the driving force for the diffusion of the species, i.e.,
the chemical potential gradient,∇µ. According to the
diffusion equation by Herring [40] and later used by
other researchers [41–43]:

|J| = (Deff/ÄakT)|∇µ| (27)

where |J| is the absolute value of the species flux
through unit area,Deff is the effective diffusion
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coefficient,Äa is the diffusion volume of the species
andkT has the usual meaning.

The chemical potential gradient in the above equation
can be approximately expressed as the chemical poten-
tial divided by the mean species diffusion distance, and
this distance is assumed to be equal to the half of the
sum of pore size and particle size, so:

|∇µ| = 21µ/(d + D) (28)

The chemical potential1µ equals the stress acted on
the pore,σp, multiplied by the diffusion volume of the
species:

1µ = Äaσp (29)

so whenns is large enough for the intermediate stage:

|J| = 4γsDeffρ
′

RDkt

[
1− cos

φe

2
(R+ 1)

]
2

d + D
(30)

The relation of the pore volume change rate and|J| is:

dVp

Vp dt
= − 1

1
6πd3

πd2Äa|J| = −6Äa

d
|J| (31)

approximately letρ ′ = ρ, so the pore volume change
rate can be expressed as:

dVp

Vp dt
= − 48ÄaργsDeff

D3R2(R+ 1)kT

[
1− (R+ 1) cos

φe

2

]
(32)

Equation 32 is the densification equation for a single
pore whennsÀ 1.

When dVp/Vp dt = 0, the pore is thermodynam-
ically stable. There is then a criticalR value,
Rc= (cosφe/2)−1 −1, which is the criterion for the
pore stability. WhenR< Rc, the pores tend to shrink.

4.3. For compacts of mono-sized pores
Under a certain packing condition of particles, the size
ratio, R, can be related to relative densities. For a com-
pact with mono-sized pores and particles, definingK
as the number of pores possessed by each particle (for
a simple cubic packingK = 1), we have:

ρ =
1
6πD3

1
6πD3+ K 1

6πd3
= 1

1+ K R3
(33)

so,

R= (Kρ)−1/3(1− ρ)1/3 (34)

Combining Equations 26, 32 and 34, the densification
equation can be obtained:

dρ

ρ dt
= 48Kρ2(1− ρ)1/3ÄaDeffγs

D3
[
(Kρ)1/3+ (1− ρ)1/3

]
kT

×
{

1− [(Kρ)−1/3(1− ρ)1/3+ 1] cos
φe

2

}
(35)

The above formula is the densification rate equation for
compacts with mono-sized pores. For such compacts,
every pore shrinks, or, more accurately, the value ofR
decreases at the same rate, so the value ofK is a constant
in the intermediate stage of sintering and commonlyK
can be assumed to be 1. In addition, for a homogeneous
compact with mono-sized pores, at higher packing den-
sities and high dihedral angle:

1− [(Kρ)−1/3(1− ρ)1/3+ 1] cos
φe

2
≈ 1 (36)

giving the condition:

dρ

ρ dt
= 48Äaρ

2(1− ρ)1/3Deff · γs

D3[ρ1/3+ (1− ρ)1/3]kT
(37)

4.4. For compacts with very narrow pore
size distribution

For a real powder compact or sintering body, there will
be pore size distributions. When the pore size distribu-
tion is narrow and an average value of the size ratio,R,
can be used, substituting for the realR, so Equation 32
becomes:

dρ

ρ dt
= 48ρ(1− ρ)ÄaDeffγs

D3R̄2(R̄+ 1)kT

[
1− (R̄+ 1) cos

φe

2

]
(38)

and the final densification equation under this condi-
tion will be approximately the same as Equation 35.
For homogeneous compacts with high enough pack-
ing densities,R< Rc, all pores tend to shrink, and the
compacts will densify. ForR> Rc, e.g., loosely but ho-
mogeneously packed superfine powders, densification
will be impossible.

4.5. For compacts of broad pore
size distributions

For these powder compacts, where the value ofR dis-
tributes equivalently broad like the pore size, the above
equations can no longer be used. Pores ofR< Rc tend
to shrink, but pores ofR> Rc are thermodynamically
stable or tend to grow. Letf (R) be the frequency dis-
tribution of R, there will be:

R̄=
∫ Rmax

Rmin

R f(R) dR (39)

so the compressive stress on the sintering body will be:

σp = 4ργs

R̄D

[
1−

∫ Rmax

Rmin

(R+ 1) f (R) dRcos
φe

2

]
(40)

and:

dρ

ρ dt
= 48Äaρ(1− ρ)Deff · γs

D3R̄2(R+ 1)kT

×
[

1−
∫ Rmax

Rmin

(R+ 1) f (R)dRcos
φe

2

]
(41)

The pores ofR> Rc are thermodynamically stable,
and though these pores will theoretically tend to grow,
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practically it was not evidently observed. So Equa-
tion 41 should probably be written as:

dρ

ρ dt
= 48Äaρ(1− ρ)Deffγs

D3R̄2(R̄+ 1)kT

×
[
1−

∫ Rc

Rmin

(R+ 1) f (R) cos
φe

2
dR

]
·
∫ Rc

Rmin

f (R) dR (42)

The above formula is a general equation for powder
compacts.

4.6. Densification equations in the final
stage of sintering

With the help of the pore microstructure model for the
final stage of sintering, and deriving the equation simi-
lar to those for the intermediate stage of sintering, fol-
lowing equations can be obtained:

dVp

Vp dt
= 48ÄaDeffγs

D3R2(R+ 1)kT

×
[
1− (R+ 1)

sin(π/ns)1/2

(π/ns)1/2
cos

φe

2

]
(43)

for a single pore with the criticalR value beingRc=
(cosφe/2)−1(π/

√
ns)(sin π/

√
ns)−1− 1; and

dρ

ρ dt
= 48Kρ(1− ρ)1/3ÄaDeff · γs

D3
[
(Kρ)1/3+ (1− ρ)1/3

]
kT

·
{

1− [1+ (Kρ)−1/3 · (1− ρ)1/3]
× sin(π/ns)1/2

(π/ns)1/2
cos

φs

2

}
(44)

or approximately letρ≈ 1, and 1− ρ≈ 0:

dρ

ρ dt
≈ 48K 2/3(1− ρ)1/3ÄaDeffγs

D3kT

×
[
1− sin(π/ns)1/2

(π/ns)1/2
cos

φe

2

]
(45)

for mono-sized pores; and

dρ

ρ dt
≈ 48Äa(1− ρ)Deffγs

D3R̄2(R̄+ 1)kT

×
[
1− (R̄+ 1)

sin(π/ns)1/2

(π/ns)1/2
cos

φe

2

]
(46)

for sintering bodies of very narrow pore size distribu-
tion; and

dρ

ρ dt
= 48(1− ρ)ÄaDeffγs

D3R̄2(R̄+ 1)kT

[
1−

∫ Rc

Rmin

(R+ 1) f (R)

×sin(π/ns)1/2

(π/ns)1/2
cos

φe

2
dR

]
·
∫ Rc

Rmin

f (R) dR

(47)

for sintering bodies of broad pore size distribution. As
for powder compacts with broad pore size distributions,
the densification rate will be smaller than those of nar-
rower pore size distribution. In the extreme case, the
final stage of sintering may not be reached [35]. If it
can be reached, the broad pore size distribution will,
most probably, still exist [42–44].

5. Discussions
5.1. Pore shrinkage criteria
5.1.1. For pores in the intermediate

stage of sintering
The essential criterion for a pore to shrink, under the
conditionnsÀ 1, has been given in part 2.2, i.e., in the
following simple equation:

R<Rc = (cosφe/2)−1− 1 (48)

The equation is applicable for pores with large coordi-
nation numbers. When the coordination numberns is
not large enough, according to Equation 22:

R< Rc = (π/ns)1/2

sin(π/ns)1/2

(
cos

φe

2

)−1

− 1 (49)

The criterion can be expressed with the coordination
number,ns. According to the relation betweenR and
ns (at high coordination number) from Equations 17,
20 and 48:

nc
s = πρ ′(Rc+ 1)2 = πρ ′

(
cos

φe

2

)−2

(50)

It can be seen that for higher dihedral angle, the critical
coordination number will be larger, and pores ofns< nc

s
can shrink, and the driving force for the pore shrinkage
will be larger for larger critical coordination number.

5.1.2. For the final stage of sintering
Equation 49 can be used as the criterion ofR value for
the final stage of sintering. At an extreme condition,
n= 1, i.e., a pore within a grain, Equation 49 can be
satisfied at any cases. The criterion of the coordination
number(ns), to simplify the problem, may approximate
as:

ns< nc
s = π

(
cos

φe

2

)−2

(51)

5.2. Sintering behavior of real
powder compacts

5.2.1. Effect of pore size distributions
The densification of real powder compacts will be com-
plicated as pore size is distributed in a certain range. If
all the pores are thermodynamically unstable (R< Rc),
all pores will tend to shrink, but smaller ones will shrink
at higher rates than those of larger sizes (particles of
different sizes are assumed to be homogeneously dis-
tributed). Stress [25] may therefore arise from the dif-
ferent densification rates between locations of differ-
ent R values. The densification process of bodies with
broader size distributions is usually slower than that
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with narrower size distribution, as at the same com-
paction condition, compacts of broad size distribution
usually contain a large amount of larger pores, probably
caused by aggregates and/or agglomerates.

5.2.2. Effect of agglomerates
The existence of large agglomerates, e.g., hundred
times larger than the primary particles would cause very
broad pore size distributions in the powder compacts
[34, 35, 45]. The primary pores among the primary par-
ticles are generally distributed in a limited range and
easy to eliminate, while the secondary pores among
agglomerates which are usually much larger and are
of very large coordination number are difficult to re-
move. During densification and grain growth, the ini-
tially larger and thermodynamically stable pores are
still difficult to remove because of the pore agglomer-
ate effect led by grain growth, as has been reported by
Francois and Kingery [46] in an investigation of the sin-
tering behavior of UO2. Studies by Zhao and Harmer
[47] show that these very large but isolated pores in the
final stage of sintering, though thermodynamically un-
stable and the pore agglomeration effect does not exist,
are still difficult to remove by kinetic reasons.

Another aspect of the effect of agglomerates on sin-
tering is reflected by the inter-action between agglom-
erates and un-agglomerated matrix when the agglomer-
ate content is low, which leads to the crack-like defects
in microstructures due to different shrinkage rates of
agglomeraters and the matrix [45, 48].

5.2.3. Effect of green densities
Pores in bodies of higher green density will have smaller
averageR value and thus the densification is favored
by (a) having a larger driving force for pore shrinkage
and (b) having smaller diffusion distances. For sintering
bodies of different densities but where all pores are ther-
modynamically unstable, the effect of green densities
will be diminished with the progress of sintering, but
for bodies of lower green densities, some pores with
high R value will become thermodynamically stable,
and densification will be greatly affected [44, 47].

5.2.4. Effect of entrapped gas
on densification in the
final stage of sintering

The effect of entrapped gas in pores in the final stage of
sintering has been considered to impede densification
by decreasing the effective dihedral angle [33]. For the
present model, the gas pressure,Pg, can be directly in-
corporated into the sintering equation in the final stage
of sintering:

σp = 4γs

RD

[
1− (R+ 1) cos

φe

2
− PgDR

4γs

]
(52)

therefore the gas entrapped in pores will retard the den-
sification process.

5.3. Comparison between the present
densification equations and
Coble’s equations

As compared to the Coble’s densification equations [12,
13], the present theory leads to consideration of the
following additional, but important items:

(1) The effect of interface energy on densification was
considered, and the concept of a pore stability criterion
introduced, such that the effect of pore size distribution
can be explained.
(2) The densification rate is related to the pore size:

particle size ratio, and pore size is not confined to only
shrink during densification. As a matter of fact, pores
were repeatedly found to grow during the intermediate
stage of sintering [39, 49, 50]. If pores only shrank but
not grew with grain growth, grain growth itself would
have led to densification. However, this is impossible.
(3) Some equation derivation errors as can be iden-

tified in Coble’s paper [12, 13] were avoided in the
present paper. For example, Equation 8 in Ref. [12] is:

Pc
∼= r 2/l 2 ≈ 10Dγa3

0(tf − t)
/

l 3 (a)

and the meanings of the symbols in the equation can be
found in Ref. [12]. The equation was integrated with re-
spect to time under the assumption of fixedl (l = grain
size, herel was a constant), however, the relationl 3=
At (note: l here became a function of time) was later
combined into the equation, and the following equation
derived:

dP
/

dt = NDγa3
0

/
l 3kT = N Dγa3

0

/
AkT t (b)

and Equation 3 in Ref. [13] was afterwards obtained:

P = P0− N Dγa3
0[ln t/t0]/AkT (c)

It is apparent that the above derivation involved some
basic errors. The linear relation between porosity and
the logarithm of time will not be obtained if the assump-
tion of fixedl or alternatively the relationl 3=At were
used throughout the whole equation derivation process.
(4) The present densification equations qualitatively

show that during heating with a certain rate a maximum
densification rate can be obtained and after that the den-
sification decreases and will decrease to nearly zero at
nearly theoretical densities. This basic sintering phe-
nomenon has been repeatedly observed in practice
[51–53], however, Coble’s equations are not consistent
with these observations.

Though the linear relation between densities and the
logarithm of time are observed both in pressureless sin-
tering and hot-pressing, the explanation still lacks a
physical basis. Coble’s equation fitted the relation, but
would have not if derived strictly. As a matter of fact,
the phenomenological relation can hardly be related
to densification kinetics because the slope of the lin-
ear relation is almost independent on the temperature,
both for pressureless sintering [54] and hot-pressing
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[22]. Besides, as discussed in Section 1, other empiri-
cal equations in addition to this linear relation between
densities and the logarithm of time were also found to
be applicable in fitting the experimental data [18, 19,
25, 26]. From these points of view, efforts to fit the phe-
nomenological relation from the thermodynamic and/or
kinetic basis are not meaningful.

6. Applications of the densification equations
6.1. Densification equations

applied to hot-pressing
Densification models describing the hot-pressing pro-
cess can be roughly divided into two categories: (a)
material flow models: materials are regarded as fluids
and densification proceeds via viscous or plastic flow
under the applied stress [22, 55]; (b) material diffusion
models: densification proceeds via diffusion enhanced
by the external pressure [23, 56]. Diffusional models
were proposed to be either grain boundary diffusion
controlled (Coble creep model) or lattice diffusion con-
trolled (Nabarro-Herring creep model) [57]. The use of
the pressureless sintering equations by Coble [12, 13]
for the sintering process in hot-pressing is not possible.
Another disadvantages of the Coble proposed model
is that, in final stage of sintering, as the pore radius
decreases, and the densification rate will reciprocally
increase, and the densification rate will become infi-
nite at full densification. The spherical pore model pre-
sented here by the present author can be directly applied
to the densification process for hot-pressing, simply
by adding the effective stress,σeff, from the external
applied pressure into Equation 22 and the following
related equations. The relation between the effective
stress,σeff and the external applied pressure,Pa, will
be simply assumed to be:

σeff = Pa(1− ρ)/4 (53)

for uniaxial hot pressing, here 1/4 stands for the ratio
between the maximum section area (1/4πd2) to the
surface area (πd2) of a particle; and

σeff = Pa(1− ρ) (54)

for isostatical hot pressing. So the total compressive
stress on a pore will be:

σP = 4γsP

RD

[
1− (R+ 1) cos

φe

2
+ σeff RD

4γsρ

]
(55)

Combining Equations 35 and 55, the densification rate
can be written as

dρ

ρ dt
= 48Kρ2(1− ρ)1/3ÄaDeffγs

D3
[
(Kρ)1/3+ (1− ρ)1/3

]
kT

×
{

1− [(Kρ)−1/3(1− ρ)1/3+ 1
]

× cos
φe

2
+ σeff RD

4γsρ

}
(56)

As the external pressure is usually much larger than the
stress arising from surface tension or interface energy,
so Equation 56 can be further simplified to be:

dρ

ρ dt
= 12(Kρ)2/3(1− ρ)2/3ÄaDeff

D2
[
(Kρ)1/3+ (1− ρ)1/3

]
kT
σeff (57)

So it can be seen that the new model is equivalent to the
lattice diffusion model (Nabarro-Herring creep model)
[57], and moreover, the equation can be directly used
either for the intermediate stage of sintering or the final
stage of sintering. The equation shows that as the rel-
ative density approaches 100%, the densification rate
will be zero.

The densification equations (Equations 56 and 57)
also show that, for the densification process in hot press-
ing, as the external pressure which exerts the compres-
sive stress on pores is usually much larger than that by
either surface or interface tension, the effect of pore
size distribution and the dihedral angle are negligible.
Therefore parameters such as surface and interface en-
ergy can be neglected and the phenomenological equa-
tions, e.g., material flow equations, are also applicable
to the sintering process of hot-pressing [22].

6.2. Densification applied to liquid
phase sintering

Liquid phase sintering has been investigated much
longer than solid state sintering [58, 59]. Generally ma-
terial flow mechanisms on macroscopical level were
used for the description of the densification behaviour
in liquid phase sintering. However, it is believed that the
material diffusion mechanism on microstructural level
could be also applied for liquid phase sintering. Under
the conditions that the particle rearrangement arising
from the capillary force were not considered, the model
proposed in this paper for solid state sintering is tried
for liquid phase sintering as follows.

6.2.1. Liquid can wet both particle
interface and surface

To wet the interface and surface at the same time, the
content of liquid phase should be high enough, and, the
condition ofγl + γls<γs and 2γls<γss should be sat-
isfied simultaneously, hereγl , γls, γs, γssare the surface
tension of liquid, interface tension between solid and
liquid phases, surface tension of solid and the interface
tension between solid particles. Under the condition the
liquid phase can form a continuous network in three di-
mension and cover all the surfaces and interfaces of
solid particles. Therefore in this case the dihedral angle
is 180◦, the driving force for densification is the surface
tension of liquid and no resistance is present for pore
shrink, so Equation 38 can be modified as:

dρ

ρ dt
= 48ρ(1− ρ)ÄaDeffγl

D3R̄2(R̄+ 1)kT

[
1− (R̄+ 1) cos

φe

2

]
= 48ρ(1− ρ)ÄaDeff,lγl

D3R̄2(R̄+ 1)kT
(58)
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here Deff,l is the diffusion coefficiency of species in
liquid phase. In this case all pores can be removed ther-
modynamically.

6.2.2. Liquid can wet only particle interface
When there is appropriate amount of liquid phase and
the condition ofγl + γls>γs and 2γls<γss can be sat-
isfied, liquid phase can only spread into the interface
between particles, all solid interface were wetted with
liquid while surface remain unwetted. In this case the
driving force for densification is the surface tension of
solid phase while the resistance is the interface tension
between liquid and solid phases, there will be the fol-
lowing densification equation:

dρ

ρ dt
= 48ρ(1− ρ)ÄaDeff,lγs

D3R̄2(R̄+ 1)kT

[
1− (R̄+ 1) cos

φe,sl

2

]
(59)

hereφe,sl is the dihedral angle between solid surface
and liquid interface. As in this case two liquid-solid
interface tensions are balanced by solid surface tension,
the dihedral angle will be expressed as:

cos
φe,sl

2
= γls

γs
(60)

In the above two cases the surface and/or interface can
be well wetted. Considering the much higher diffusion
ability in liquid than in solids (this is approximately
equivalent to the concept of “solution-precipitation”
process [59] used in liquid phase sintering), the den-
sification process will be accelerated as compared to
solid state sintering through the process of mass trans-
port via liquid phase, and the sintering temperature can
therefore be lowered significantly.

6.2.3. Liquid phase can wet neither
surface nor interface

In this case there is no capillary force of the liquid
phase which can act as the driving force for particle
rearrangement. The liquid phase cannot act as the dif-
fusion path of solid species, in contrast it may act as the
impedance for the diffusion of solid species. Therefore
though there is rarely such cases, once such a situation
is present, the densification is believed to be greatly re-
tarded. For example, when about 1 wt % sodium oxide
were added into Y-TZP powder, the densification of the
materials were greatly affected [60].

7. Conclusion
1) The stability of a two-dimensional pore can be de-
termined by a mathematical relation of the curvature
of the pore-particle surface, coordination number, and
dihedral angle. The stability of a space pore can be ap-
proximately determined by a spherical pore model, and
has been found to be related to the dihedral angle, par-
ticle coordination number, and the size ratio of the pore
to its surrounding particles.

2) Based on the spherical pore model, pore mi-
crostructure models for sintering were developed both
for the intermediate and final stages of sintering.

3) Densification equations for the intermediate and
final stages of solid state sintering are derived by relat-
ing densification to pore to particle size ratio, and used
for the understanding of the densification process. The
criterion for pore shrinkage was obtained.

4) The derived equations can be used for the expla-
nation of the effect of pore size distribution, agglomer-
ation properties, the density of the green compacts and
entrapped gas in the final stage on sintering.

5) The derived densification equations can be eas-
ily developed for sintering process of hot-pressing or
isostatic-hot-pressing. The results show that the densi-
fication equations for hot-pressing fit the lattice creep
model.

6) Efforts were made to apply the densification equa-
tions for solid state sintering to liquid phase sintering
under several different wetting conditions between liq-
uid phase and solid particle phase.
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